

Heterocyclic Letters Vol. 7| No.3|775-789|May-July| 2017 ISSN : (print) 2231–3087 / (online) 2230-9632 CODEN: HLEEAI http://heteroletters.org

SYNTHESIS AND CHARACTERIZATION OF MICROWAVE INDUCED PYRANO[3,2-c]CHROMENE, PYRANO[4,3-b]PYRAN AND 4H-CHROMENE DERIVATIVES OF SUBSTITUTED 2-(4-SUBSTITUTED) PHENYL-*N*-ALLYL-INDOLE, AND THEIR BIOLOGICAL SCREENING

Pratibha Prasad, Pratik. G. Shobhashana, and Manish P. Patel*

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India

E-mail: patelmanish1069@yahoo.com

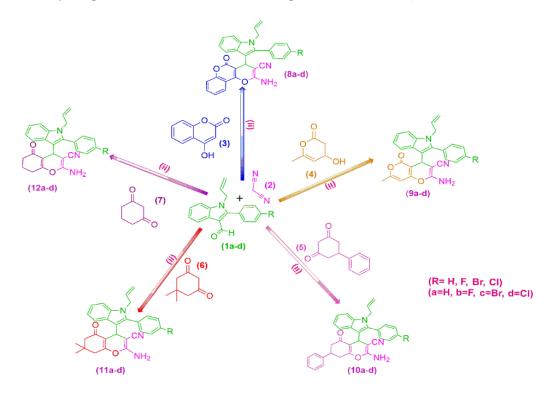
Abstract:

A new category of indole based pyrano[3, 2-*c*]chromene **8a-d**, pyrano[4,3-*b*]pyran **9a-d** and 4H – chromene **10-12a-d** derivatives has been designed and synthesized via microwaveinduced one-pot three-component cyclocondensation reaction of 2-(4-substituted) phenyl-*N*allyl-indole-3-carbaldehyde **1a-d** with active methylene malononitrile **2** and different enolizable michael donars **3-7** in the presence of catalytic amount of triethylamine in ethanol. All the newly synthesized compounds have been characterized by elemental analysis and various spectroscopic methods. All the compounds have been screened against a representative panel of pathogenic strains of bacteria and fungi, preliminary *in vitro* antituberculosis activity against *M. tuberculosis* H37Rv and also for their antimalarial activity against *P. falciparum*.

Key words: *N*-allyl indole,antimicrobial activity, antitubercular activity, pyranopyran

Introduction

An extensive variety of indole alkaloids have been isolated from marine organisms¹. Since from several decades synthesis and functionalization of indoles have been the major objectives of research, as it is well known that indole derivatives are an important class of heterocyclic compounds with a wide range of biological activities. Precisely, *N*-1, *C*-2 and *C*-3-substituted indole derivatives have been found to be an significant fragment in many biologically active compounds especially with antimigrane, antidepressant, anti-HIV, analgesic, anti inflammatory, anticancer, antinociceptive and antipsychotic activity etc. ^{II}. Also, the presence of allyl group at the heterocyclic *N*-atom is found to have influential antimicrobial activity and plays a vital role in the development of new antimicrobial drugs ^{III}. On the other hand, 4*H*-fused pyrans and chromenes are compounds of considerable interest revealing potentially beneficial wide range of chemical properties and biological activities ^{IV-} ^X, such as antimicrobial and antituberculosis, anticancer and antipsychotics etc.


M.P. Patel et al. / Heterocyclic Letters Vol. 7| No.3|775-789|May-July| 2017

Thus in addition to the pharmacologically active fused pyrano and chromeno derivatives, other heterocycles in connotation with above mentioned moiety play an vital role in copious biological processes and hold significant chemical and pharmacological importance. Inspired from the aforementioned reports and as a extension of our examination on the synthesis and development of biologically active heterocyclic compounds ^{XI-XIII}. We were provoked and attempted to involve *N*-allyl-4-phenyl-substituted indole motif with chromene scaffolds and synthesise it into one hybrid heterocyclic molecule which may play a vital role as an important creation part in title compounds. However some inadequacies were observed in executing conventional methods such as, longer reaction time, use of drastic reaction conditions, hazardous organic base and poor yield ^{XIV}. Hence in comparison to classical approach we adopted an alternative microwave-assisted organic synthetic approach and ecofriendly base NEt₃ which has been demonstrated not only to dramatically accelerate many organic reactions in short time, but also to improve yield and high reaction selectivity ^{XV}.

Results and Discussion

Chemistry

The synthetic approach adopted to obtain the targeted compounds, pyrano[3,2-*c*]chromene **8a–d**, pyrano[4,3-*b*]pyran **9a–d** and 4*H*-chromene **10a–d**, **11a–d** and **12a–d**, derivatives were synthesized by the plausible reaction mechanism depicted in (Scheme 1).

The final aldehyde substituted 2-phenyl-*N*-allyl-indole-3-carbaldehyde **1a–d** was prepared by nucleophilic displacement of bromo group of allyl bromide with 2-phenyl-(4-substituted)-indole-3-carbaldehyde, in refluxing DMF using anhydrous potassium carbonate as base. Thus, the targeted chromeno and pyrano derivatives were synthesized by one-pot three-component cyclocondensation reaction of substituted 2-phenyl-*N*-allyl-indole-3-carbaldehyde **1a–d**, malononitrile **2** and various enolisable ketones **3-7** was performed in a microwave oven

at 340W in the presence of triethylamine as a catalyst to give moderate to good yield (68–84%) substantially through the plausible synthetic route as illustrated in **Fig.1**.

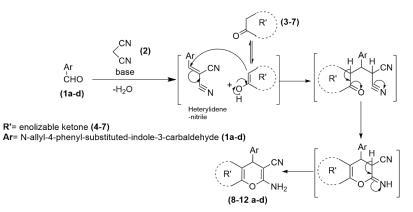


Fig. 1 Plausible mechanistic pathway for the synthesis of chromene, pyrano pyran and pyran derivatives

The reaction may proceed via an in situ initial formation of the hetarylidene nitrile, containing the electron-poor C=C double bond, from the knoevenagel condensation between respective indole-3-carbaldehydes **1a-d** and malononitrile **2** by loss of water molecules. Finally, michael addition of **3-7** to the initially formed unsaturated nitrile, i.e. nucleophilic attack of hydroxyl moiety to the cyano olefins afforded cyclized pyrano and chromeno products.

The newly synthesized compounds were characterized by ¹H NMR, ¹³C NMR, FT-IR and elemental analysis. The molecular weight of compounds was confirmed by mass spectrometry. Physical, analytical and spectroscopic characterization data of all compounds are given in Supplementary material. ¹H NMR (CDCl₃) spectrum of **11c** exhibited a multiplet peak for enolisable dimedone around 0.08-1.01 ppm stands for two $-CH_3$ while four $-CH_2$ protons resonates at 2.16-2.47 ppm. Amine, aldehydic and vicinal allylic protons of 11c resonate as multiplets at around 4.46-4.52 ppm. Whereas trans and cis geminal protons of allylic group resonates as a doublet at around 4.65 and 5.10 ppm respectively, while another single geminal proton also projects multiplet at 5.81-5.88 ppm. Remaining aromatic protons of **11c** resonate as multiplet at 7.07-7.88 ppm. ¹³C NMR (CDCl₃) spectrum shows characteristic peak at 27.08 ppm for cyclized carbon, 28.07 ppm and 28.63 ppm for two methyl dimedone carbons, 63.45 ppm for C-CN, 161.17 ppm for C-NH and 196.37 ppm for C=O, all these peaks thus supports the structure of **11c**. The IR spectrum of compound **11c** exhibited characteristic absorption bands around 3416-3376 cm⁻¹ and 2187 cm⁻¹ for (asym. and sym. stretching) –NH and C=N stretching respectively. The characteristic absorption band of C=O stretching and C-O-C ether stretching are observed around 1671 cm⁻¹ and 1263 cm^{-1} .

Biological results

Antibacterial activity- Upon reviewing the antimicrobial screening data (Table 1), it has been observed that majority of the compounds showed outstanding activity against gram positive bacteria *S. pneumonia*, *B. subtilis* and *C. tetani* as compared to ampicillin, ciprofloxacin and norfloxacin standard drugs. Against gram positive bacteria *C. tetani* compound **8a** (R' = 4-hydroxy-coumarin, R = H), **8d** (R' = 4-hydroxy-coumarin, R = Br) (MIC 62.5 μ g/mL) was found to have outstanding activity; compounds **9a** (R' = 4-hydroxy-6-methyl-2*H*-pyran-2-one, R = H), **10c** (R' = 5-phenylcyclohexane-1,3-dione, R = Cl), **11d** (R' = dimedone, R = Br), **12a** (R' = 1,3cyclohexanedione, R = H) (MIC 100 μ g/mL) showed significant activity as compared to ampicillin (MIC 250 μ g/mL) and showed equivalent

M.P. Patel et al. / Heterocyclic Letters Vol. 7| No.3|775-789|May-July| 2017

results to ciprofloxacin (MIC 100 μ g/mL). Further against *B. subtilis* compound **9c** (R' = 4-hydroxy-6-methyl-2*H*-pyran-2-one, R = Cl), **12c** (R' = 1,3cyclohexanedione, R = Cl) (MIC 62.5 μ g/mL) and against *S. pneumoniae* compounds **8c** (R' = 4-hydroxy-coumarin, R = Cl), **10a** (R' = 5-phenylcyclohexane-1,3-dione, R = H) (MIC 62.5 μ g/mL) was found to have outstanding activity in comparison to the standard drug ampicillin; while compounds **8b** (R' = 4-hydroxy-coumarin, R = F), **8d** (R' = 4-hydroxy-coumarin, R = Br) **9d** (R' = 4-hydroxy-6-methyl-2*H*-pyran-2-one, R = Br), **10a** (R' = 5-phenylcyclohexane-1,3-dione, R = H), **10c** (R' = 5-phenylcyclohexane-1,3-dione, R = Cl), **12b** (R' = 1,3cyclohexanedione, R = F), **12d**(R' = 1,3cyclohexanedione, R = F), **12d**(R' = 1,3cyclohexanedione, R = Br) (MIC 100 μ g/mL) showed significant activity as compared to ampicillin (MIC 250 μ g/mL) and were equipotent to norfloxacin (MIC 100 μ g/mL).

Entry	Gram-negative bacteria			Gram-positive bacteria			Fungi	
-	E. C.	S.T.	V.C.	S. P.	B. S.	С. Т.	С. А.	T. R.
	MTCC	MTCC	MTCC	MTCC	MTCC	MTCC	MTCC	MTCC
	443	98	3906	1936	441	449	227	297
8 a	100	200	200	200	200	62.5	>1000	>1000
8b	250	12.5	250	100	100	200	>1000	1000
8c	100	62.5	100	62.5	100	200	500	1000
8d	250	100	125	100	100	62.5	100	500
9a	200	200	200	200	125	100	250	1000
9b	62.5	250	62.5	200	250	250	250	500
9c	100	100	250	200	62.5	200	>1000	>1000
9d	200	125	100	100	100	200	1000	>1000
10a	250	250	250	62.5	100	200	>1000	1000
10b	100	100	125	100	250	250	500	500
10c	200	250	100	200	100	100	1000	>1000
10d	100	100	250	200	250	250	100	>1000
11a	100	100	200	200	200	250	1000	1000
11b	100	62.5	100	100	200	200	500	>1000
11c	200	250	500	125	200	125	500	1000
11d	250	100	200	200	125	100	250	500
12a	62.5	100	500	500	125	100	1000	>1000
12b	100	250	100	200	100	200	500	1000
12c	62.5	100	125	100	62.5	125	>1000	1000
12d	100	250	100	200	100	200	500	1000
Ampicillin	100	100	100	100	250	250	-	-
Ciprofloxacin	25	25	25	50	50	100	-	-
Norfloxacin	10	10	10	10	100	50	-	-
Nystatin	-	-	-	-	-	-	100	500
Greseofulvin	-	-	-	-	-	-	500	500

Table 1 In vitro antimicrobial activities (MIC, µg/mL) of the synthesized compounds.

Bold values indicate the active compounds; E.C., Escherichia coli; S.T., Salmonella typhi; V.C., Vibrio cholerae; S.P., Streptococcus pneumoniae; B.S., Bacillus subtilis; C.T., Clostridium tetani; C.A., Candida albicans; T.R., Trichophyton rubrum. MTCC: Microbial Type Culture Collection; '-' indicates that not tested

Whereas in inhibiting gram negative bacteria in comparison to the standard drug ampicillin and ciprofloxacin compound **8b** (R' = 4-hydroxy-coumarin, R = F) (MIC 12.5 μ g/mL) showed outstanding against *S. typhi*. Compounds**9b** (R' = 4-hydroxy-6-methyl-2*H*-pyran-2one, R = F), **12a** (R' = 1,3cyclohexanedione, R = H), **12c** (R' = 1,3cyclohexanedione, R = Cl)(MIC 62.5 μ g/mL) against *E. coli*; compounds **8c**(R' = 4-hydroxy-coumarin, R = Cl), **11b** (R' = dimedone, R = F) (MIC 62.5 µg/mL) against S. typhi and compound **9b** (R' = 4hydroxy-6-methyl-2*H*-pyran-2-one, R = F) (MIC 62.5 µg/mL) against V. cholerae showed excellent activity as compared to ampicillin. Whereas compounds 8a (R' = 4-hydroxycoumarin, R = H), 8c (R' = 4-hydroxy-coumarin, R = Cl) 9c (R' = 4-hydroxy-6-methyl-2*H*pyran-2-one, R = Cl, 10b (R' = 5-phenylcyclohexane-1,3-dione, R = F), 10d (R' = 5phenylcyclohexane-1,3-dione, R = Br), 11a (R' = dimedone, R = H), 12b (R' = 1,3cyclohexanedione, R = F), 12d (R' = 1,3cyclohexanedione, R = Br) (MIC 100 µg/mL) against E. coli compound 8d (R' = 4-hydroxy-coumarin, R = Br), 9c (R' = 4-hydroxy-6methyl-2*H*-pyran-2-one, R = Cl, **10b** (R' = 5-phenylcyclohexane-1,3-dione, R = F), **10d** (R'= 5-phenylcyclohexane-1,3-dione, R = Br), 11a (R' = dimedone, R = H), 11d (R' = dimedone, R = Br), 12a (R' = 1,3cyclohexanedione, R = H), 12c (R' = 1,3cyclohexanedione, R = H) (MIC 100 μ g/mL) against S. typhi and compounds 8c (R' = 4-hydroxy-coumarin, R = Cl), 9d (R' = 4-hydroxy-6-methyl-2H-pyran-2-one, R = Br), **10c** (R' = 5-phenylcyclohexane-1,3dione, R = Cl), 11b (R' = dimedone, R = F), 12b (R' = 1,3cyclohexanedione, R = F), 12d (R' = 1,3cyclohexanedione, R = Br) (MIC 100 μ g/mL) against V. cholerae were equipotent as compared to standard drug ampicillin. Antituberculosis activity- Some excellent results from the antimicrobial studies encouraged us to go for the preliminary screening of the title compounds for their *in vitro* antituberculosis activity against *M. tuberculosis* H37Rv bacteria. Antituberculosis activity screening of the synthesized compounds was conducted at 250 mgmL⁻¹ concentrations. Compounds 8b (R' = 4-hydroxy-coumarin, R = F), 9a (R' = 4hydroxy-6-methyl-2*H*-pyran-2-one, R = H) and **10c** (R' = 5-phenylcyclohexane-1, 3-dione, R = Cl) found to possess excellent highest potency with 94, 92 and 90 % inhibition respectively. While two compounds 8c (R' = 4-hydroxy-coumarin, R = Cl) and 11c (R' = dimedone, R = Cl) are moderately active against *M. tuberculosis* H37Rv. All other compounds showed poor inhibition of *M. tuberculosis* growth. From the above results, it can be concluded that compounds 8b and 9a may become a new class of antitubercular agents in future.

Entry	% Inhibition	Entry	% Inhibition	
8a	62	10d	82	
8b	94	11a	76	
8c	89	11b	64	
8d	56	11c	86	
9a	91	11d	62	
9b	83	12a	74	
9c	81	12b	73	
9d	62	12c	53	
10a	53	12d	65	
10b	75	Rifampicin	98	
10c	90	Isoniazid	99	

Table 2 *In vitro* antituberculosis activity (% inhibition) of compounds against M. tuberculosis H37Rv (at concentration 250 µg/mL).

Antimalarial activity- All synthesized compounds were screened for their *in vitro* antimalarial activity against *P. falciparum* strain. All experiments were performed in duplicate and the IC₅₀ mean value is shown in (**Table 3**). The compounds **8b** (R' = 4-hydroxy-coumarin, R = F), **8c** (R' = 4-hydroxy-coumarin, R = Cl), **9b** (R' = 4-hydroxy-6-methyl-2*H*-pyran-2-one, R = F), **9d** (R' = 4-hydroxy-6-methyl-2*H*-pyran-2-one, R = Br), **10b** (R' = 5-phenylcyclohexane-1, 3-dione, R = F), **10c** (R' = 5-phenylcyclohexane-1, 3-dione, R = F), **10c** (R' = 5-phenylcyclohexane-1, 3-dione, R = F), **10c** (R' = 5-phenylcyclohexane-1, 3-dione, R = F), **10b** (R' = 5-phenylcyclohexane-1, 3-dione, R = F), **10c** (R' = 5-phenylcyclohexane-1, 3-dione, R

Cl), **11a** (R' = dimedone, R = H), **11b** (R' = dimedone, R = F), **12c** (R' = 1,3 cyclohexanedione, R = Cl) showed principal activity *against P. falciparum* strain in comparison to quinine IC₅₀ 0.268 as there IC₅₀ were in the range of 0.032 - 0.096. Whereas compound **9d** (R' = 4-hydroxy-6-methyl-2*H*-pyran-2-one, R = Br) was found to possess moderate activity i.e. IC₅₀ 0.032 aligned with chloroquine. Rest of the remaining other compounds showed less antimalarial activity against *P. falciparum* strain in comparison to chloroquine and quinine drugs.

Entry	$IC_{50}(\mu g/mL)$	Entry	IC ₅₀ (μg/mL)
8a	1.063	10d	1.49
8b	0.071	11a	0.037
8c	0.052	11b	0.051
8d	1.48	11c	0.89
9a	1.84	11d	0.64
9b	0.096	12a	1.45
9c	1.054	12b	0.68
9d	0.032	12c	0.71
10a	1.81	12d	0.081
10b	0.053	Chloroquine	0.020
10c	0.046	Quinine	0.268

Table 3 In vitro antimalarial activity of compounds

The bold characters indicate the higher or equal activity compared to standard drugs.

Structure–activity relationship (SAR) - The structural activity relationship (SAR) analysis (**Fig. 2**) demonstrated that a change in the peripheral substituent and various different nature of the heterocyclic motifs fused at positions 5 and 6 in pyran were liable for a broad range of antimicrobial, antituberculosis and antimalarial activities. The investigation revealed that the compounds with 4-fluoro and chloro phenyl ring at the 2-position of the indole nucleus. Also, the lipophilicity of allylic substitution at indole nitrogen, plays an important role to stimulate the potency of the compounds. Compounds **8a-d** bearing 4-hydroxy-coumarin showed maximum antibmicrobial activity against *S. typhi, C. tetani, C. albicans* as well as increased antimalarial and antitubercular activitry against *P. falciparum* strain and *M. tuberculosis* H37Rv respectively, where compound **8b** was inclusively active of all with fluoro phenyl ring substitution. Compounds **9b** containing 4-hydroxy-6-methyl-2*H*-pyran-2-one motif showed highest inhibition against bacterial strain *E. coli, V. cholerae* and also showed highest inhibition against both fungal pathogens *C. albicans* and *T. rubrum*, also antimalarial activity against malarial pathogen.

M.P. Patel et al. / Heterocyclic Letters Vol. 7| No.3|775-789|May-July| 2017

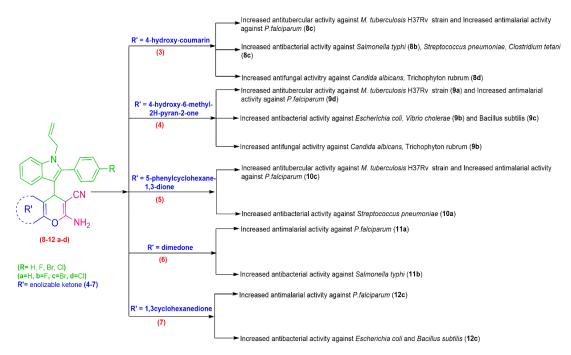


Fig. 2 Structure-activity relationship for antimicrobial, antituberculosis and antimalarial activity of the synthesized compounds

Whereas compound **9c** against *B. subtilis* and *M. tuberculosis* H37Rv showed increased antibacterial and antitubercular activity respectively. Compound **10c** containing 5phenylcyclohexane-1, 3-dione showed good antifungal activity as well maximum activity against tubercular and malarial pathogen. Whereas compound bearing dimedone illustrated maximum activity against *P. falciparum* strain.Compounds **12c** with fused 1, 3 cyclohexanedione moiety were found to be active against bacterial pathogens *E. coli, B. subtilis* and an*timalarial pathogen*. Antimalarial and antitubercular evaluation showed that 4fluoro and chloro phenyl ring containing compounds are the most potent of all synthesized compounds. Thus, probing and evaluating the activity data, it is noteworthy to mention that the overall activity of the target compounds depends not only on the nature of the peripheral substituents appended through phenyl ring , positional changes, their spatial relationship, but also upon pharmacologically active heteroaromatic intermediates which are fused to form various derivatives also as well.

Experimental

Chemistry

Required acetophenone, phenyl hydrazine, polyphosphoric acid, triethylamine and phosphorous oxychloride were obtained commercially. Moreover, malononitrile and enolizable ketones were obtained from Sigma-Aldrich and were used without further purification. Solvents were purified and dried before being used. The required substituted 2-phenyl-*N*-allyl-indole-3-carbaldehyde **1a–d** was prepared by Vilsmeier-Haack reaction according to literature procedure ^{XVI}. All melting points were taken in open capillaries and are uncorrected. Thin-layer chromatography (TLC, on aluminum plates precoated with silica gel, $60F_{254}$, 0.25 mm thickness) (Merck, Darmstadt, Germany) was used for monitoring the progress of all reactions, purity and homogeneity of the synthesized compounds; eluent-hexane:ethyl acetate: (5:5). UV radiation and/or iodine were used as the visualizing agents. Elemental analysis (% C, H, N) was carried out by Perkin-Elmer 2400 series-II elemental analyzer (Perkin Elmer, USA) and all compounds are within ±0.4% of theory specified. The

IR spectra were recorded in KBr on a PerkinElmer Spectrum GX FT-IR Spectrophotometer (PerkinElmer, USA) and only the characteristic peaks are reported in cm⁻¹. ¹H NMR and ¹³C NMR spectra were recorded in CHCl₃ on a Bruker Advance 400F (MHz) spectrometer (Bruker Scientific Corporation Ltd., Switzerland) using solvent peak as internal standard at 400 and 100 MHz, respectively. Chemical shifts are reported in parts per million (ppm). Mass spectra were scanned on a Shimadzu LCMS 2010 spectrometer (Shimadzu, Tokyo, Japan).

General procedure for the synthesis of targeted compounds

Substituted 2-phenyl-*N*-allyl-indole-3-carbaldehyde **1a–d** (1 mmol), malononitrile **2** (1 mmol), 4-hydroxy-coumarin **3**/4-hydroxy-6-methyl-2*H*-pyran-2-one **4**/ 5-phenylcyclohexane-1,3-dione **5**/ dimedone **6**/1,3cyclohexanedione**7** (1 mmol) were mixed thoroughly in ethanol with catalytic NEt₃ (20 mol%) and were charged in 100 mL round bottom flask equipped with condenser. The reaction mixture was subjected to microwave irradiation at 340 W (50% of output power) for 4–6 min. The reaction mixture attained 75°C temperature at this power level. The progress of reaction was monitored by TLC (hexane:ethyl acetate = 4:6). After the completion of reaction, the reaction mixture was cooled to room temperature. The separated solid was filtered, washed with ethanol, dried and recrystallized from chloroform:methanol (9:1) to obtain crude product. The physicochemical and spectroscopic characterization data of the prepared compounds are given below.

4-(1-allyl-2-phenyl-1*H*-indol-3-yl)-2-amino-3-methyl-4*H*,5*H*-pyrano[3,2-*c*]chromen-5-one (8a)

White solid; m. p. 280°C; IR (KBr, v,cm⁻¹): 3420 and 3371 (asym and sym. Stretching of -NH₂), 2185 (-C=N stretching), 1671 (C=O Stretching) 1209 (C-O-C ether stretching)¹H NMR (400 MHz, DMSO- d_6) δ ppm: 4.55-4.66 (m, 4H, N-CH₂CH=CH₂trans, CHO), 5.10 (d,1H, N-CH₂CH=CH₂cis), 5.74 -5.81 (m,1H, NCH₂CH), 6.98-7.87 (m,15H, Ar-H+NH₂); ¹³CNMR (100 MHZ, DMSO- d_6) δ ppm: 28.78,45.89, 63.37, 104.13, 109.60, 111.17, 112.60, 112.86, 116.91, 118.15, 118.27,119.39, 121.92, 122.33, 123.89, 124.48, 125.90, 129.06, 131.56, 132.39, 133.04, 136.12, 138.92,152.63, 153.64, 156.18, 159.91, 161.61(C=O); MS (m/z) Cald.:471.18, found:471.45, Anal. Calc. for: C₃₀H₂₁N₂O₃: C, 76.42; H, 4.49; N, 8.91 Found: C, 76.24; H, 4.53; N, 9.01 %

4-(1-allyl-2-(4-fluorophenyl)-1*H*-indol-3-yl)-2-amino-5-oxo-4*H*,5*H*-pyrano[3,2*c*]chromene-3-carbonitrile (8b)

White solid; m. p. 275°C; IR (KBr, v,cm⁻¹): 3451 and 3369 (asym and sym. stretching of -NH₂), 2196 (-C=N stretching), 1668 (C=O Stretching), 1221(C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 4.52-4.84 (m, 6H, N-CH₂CH=CH₂trans, CHO, NH₂), 5.11 (d, 1H, N-CH₂CH=CH₂cis), 5.81 -5.85 (m, 1H, NCH₂CH), 7.03-7.84 (m, 12H, Ar-H); ¹³CNMR (100 MHZ, CDCl₃) δ ppm: 28.35, 46.15, 63.37, 104.13, 110.60, 112.60, 112.86, 116.91, 118.15, 118.28, 119.93,121.88, 122.21, 123.41, 124.43, 125.91, 129.97, 131.46, 132.51, 133.23, 136.72, 138.34, 152.56, 153.02, 156.49, 159.87, 162.83, 161.91(C=O); MS (m/z) Cald.: 489.51, found: 489.85, Anal. Calc. for: C₃₀H₂₀FN₃O₃: C, 73.61; H, 4.12; N, 8.58 Found: C, 73.76; H, 5.07 N, 7.94 %

4-(1-allyl-2-(4-bromophenyl)-1*H*-indol-3-yl)-2-amino-5-oxo-4*H*,5*H*-pyrano[3,2*c*]chromene-3-carbonitrile (8c)

White solid; m. p. 278°C; IR (KBr, v,cm⁻¹): 3445 and 3365 (asym and sym. Stretching of -NH₂), 2187 (-C=N stretching), 1667 (C=O Stretching), 1225 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 4.50-4.83 (m, 6H, N-CH₂CH=CH₂trans, CHO, NH₂), 5.10

(d, 1H, N-CH₂CH=C<u>H</u>₂cis), 5.79-5.83 (m, 1H, NCH₂C<u>H</u>), 7.03-7.82 (m, 12H, Ar-<u>H</u>); ¹³CNMR (100 MHZ, CDCl₃) δ ppm: 28.32, 46.13, 63.34, 104.15, 110.58, 112.57, 112.83, 116.87, 118.13, 118.23, 119.89,121.79, 122.18, 123.35, 124.46, 125.87, 129.94, 131.48, 132.53, 133.27, 135.65, 136.78, 138.31, 152.58, 153.08,156.52, 159.83, 161.85(C=O); MS (m/z) Cald.: 550.41, found: 550.63, Anal. Calc. for: **C**₃₀**H**₂₀**BrN**₃**O**₃: C, 65.47; H, 3.66; N, 7.63 Found: C, 65.53; H, 3.72; N, 7.75 %

4-(1-allyl-2-(4-chlorophenyl)-1*H*-indol-3-yl)-2-amino-5-oxo-4*H*,5*H*-pyrano[3,2*c*]chromene-3-carbonitrile (8d)

White solid; m. p. 301° C; IR (KBr, v,cm⁻¹): 3457 and 3373 (asym and sym. stretching of -NH₂), 2185 (-C=N stretching), 1672 (C=O Stretching), 1230 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 4.52-4.85 (m, 6H, N-CH₂CH=CH₂trans, CHO, NH₂), 5.21 (d, 1H, N-CH₂CH =CH₂ cis), 5.78-5.84 (m, 1H, NCH₂CH), 7.05-7.84 (m, 12H, Ar-H); ¹³CNMR (100 MHZ, CDCl₃) δ ppm:28.30, 46.15, 63.32, 104.18, 110.65, 112.56, 112.97, 116.72, 118.15, 118.21, 119.83,121.83, 122.20, 123.31, 124.51, 125.85, 129.91, 131.51, 132.52, 133.28, 135.65, 136.72, 138.28, 152.53, 153.13,156.57, 159.81, 161.84(C=O); MS (m/z) Cald.: 505.96, found: 505.84, Anal. Calc. for: C₃₀H₂₀CIN₃O₃: C, 71.22; H, 3.98; N, 8.31 Found: C, 71.36; H, 4.08; N, 8.28 %

4-(1-allyl-2-phenyl-1*H*-indol-3-yl)-2-amino-7-methyl-5-oxo-4*H*,5*H*-pyrano[4,3-*b*]pyran-3-carbonitrile (9a)

White solid; m. p. 251°C; IR (KBr, v,cm⁻¹): 3408 and 3375 (asym and sym. Stretching of -NH₂), 2209 (-C=N stretching), 1673 (C=O Stretching), 1261(C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 2.23 (s, 3H, CH₃), 4.55-4.70 (m, 5H, N-CH₂CH, CHO, NH₂), 4.81(d,1H, N-CH₂CH=CH₂trans), 5.11(d,1H, N-CH₂CH=CH₂cis), 5.79 -5.85 (m,1H, NCH₂CH), 6.91-8.04 (m,11H, Ar-H); ¹³CNMR (100 MHZ, CDCl₃) δ ppm: 20.15, 27.83, 45.89, 63.16, 101.07, 108.29, 109.12, 111.17,112.36, 115.34, 116.22, 118.08, 119.24, 121.27,123.39, 130.92, 131.33, 133.89, 136.48, 138.90, 155.06, 156.56, 157.39, 161.04, 162.12(C=O); MS (m/z) Cald.:435.16, found:435.45, Anal. Calc. for: C₂₇H₂₁N₃O₃: C, 74.47; H, 4.86; N, 9.97 Found: C, 74.04; H, 4.69; N, 10.06 %

4-(1-allyl-2-(4-fluorophenyl)-1*H*-indol-3-yl)-2-amino-7-methyl-5-oxo-4*H*,5*H*-pyrano[4,3*b*]pyran-3-carbonitrile (9b)

White solid; m.p 281°C; IR (KBr, v,cm⁻¹): 3485 and 3325 (asym and sym. stretching of -NH₂), 2189 (-C=N stretching), 1675 (C=O Stretching), 1247 (C-O-C ether stretching); ¹H NMR (400 MHz CDCl₃) δ ppm: 2.21 (s, 3H, CH₃), 4.54-4.83 (m, 6H, N-CH₂CH, CHO, N-CH₂CH=CH₂trans, NH₂), 5.11(d, 1H, N-CH₂CH=CH₂cis), 5.80 -5.88 (m, 1H, NCH₂CH), 7.06-7.64 (m, 9H, Ar-H); ¹³CNMR (100 MHZ, CDCl₃) δ ppm: 20.14, 27.86, 46.12, 63.40, 101.07, 108.52, 109.76, 110.60, 116.59, 118.16, 118.35, 119.70, 121.84, 123.42, 130.00, 131.45, 133.24, 136.89, 138.34, 156.51, 157.14, 157.42, 161.64, 162.30, 163.43(C=O); MS (m/z) Cald.: 453.15, found: 453.52, Anal. Calc. for: C₂₇H₂₀FN₃O₃:71.51; H, 4.45; F, 4.19; N, 9.27; Found: C, 71.35; H, 4.05; N, 9.43 %

4-(1-allyl-2-(4-bromophenyl)-1*H*-indol-3-yl)-2-amino-7-methyl-5-oxo-4*H*,5*H*-pyrano[4,3-*b*]pyran-3-carbonitrile (9c)

White solid; m. p. 264°C; IR(KBr, v,cm⁻¹): 3414 and 3382 (asym and sym. Stretching of -NH₂), 2210 (-C=N stretching), 1681 (C=O Stretching), 1256(C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 2.14 (s, 3H, CH₃), 4.52-4.64 (m, 5H, N-CH₂CH, CHO, NH₂), 4.81(d, 1H, N-CH₂CH=CH₂trans), 5.10(d, 1H, N-CH₂CH=CH₂cis), 5.80 - 5.88 (m, 1H, NCH₂C<u>H</u>), 7.06-7.85 (m, 9H, Ar-<u>H</u>); ¹³CNMR (100 MHZ, CDCl₃) δ ppm: 20.16, 27.74, 46.09, 64.91, 97.59, 101.15, 104.43, 108.56, 110.57, 116.49, 118.14, 119.65, 121.63, 125.85, 128.42, 130.51, 133.32, 136.73, 138.57, 142.42, 145.56, 148.02, 156.46, 157.46, 162.27(C=O); MS (m/z) Cald.: 513.07, found: 513.23, Anal. Calc. for: C₂₇H₂₀BrN₃O₃: C, 63.05; H, 3.63; N, 8.40 Found: C, 63.14; H, 3.62; N, 8.39 %

4-(1-allyl-2-(4-chlorophenyl)-1*H*-indol-3-yl)-2-amino-7-methyl-5-oxo-4*H*,5*H*-pyrano[4,3*b*]pyran-3-carbonitrile (9d)

White solid; m. p. 271°C; IR (KBr, v,cm⁻¹): 3485 and 3334 (asym and sym. stretching of -NH₂), 2198 (-C=N stretching), 1659 (C=O Stretching), 1261 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 2.12 (s, 3H, CH₃), 4.51-4.63 (m, 5H, N-CH₂CH, CHO, NH₂), 4.79(d, 1H, N-CH₂CH=CH₂trans), 5.12(d, 1H, N-CH₂CH=CH₂cis), 5.79 -5.81 (m, 1H, NCH₂CH), 7.04-7.83 (m, 9H, Ar-H); ¹³CNMR (100 MHZ, CDCl₃) δ ppm: 20.14, 27.62, 46.13, 64.83, 97.62, 101.18, 104.41, 108.54, 110.53, 116.51, 118.17, 119.63, 121.71 125.78, 128.38, 130.49, 133.30, 136.71, 138.54, 142.44, 145.54, 148.07, 156.51, 157.43, 162.25(C=O); MS (m/z) Cald.: 469.12, found: 469.24, Anal. Calc. for: C₂₇H₂₀ClN₃O₃: C, 69.01; H, 4.29; N, 9.22 Found: C, 68.97; H, 4.08; N, 9.15 %

4-(1-allyl-2-phenyl-1*H*-indol-3-yl)-2-amino-5-oxo-7-phenyl-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile (10a)

White solid; m. p. 271°C; IR (KBr, v,cm⁻¹): 3421 and 3373 (asym and sym. Stretching of -NH₂), 2208 (-C \equiv N stretching), 1678 (C=O Stretching), 1263 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 2.52-2.79 (m, 4H, 2xCH₂), 3.27- 3.43 (m, 1H, CH), 4.51- 4.68 (m,5H,N-CH₂CH, CHO, NH₂), 4.84(d, 1H, N-CH₂CH=CH₂trans), 5.15(d,1H, N-CH₂CH=CH₂cis), 5.75-5.87 (m, 1H, NCH₂CH), 6.98-7.97 (m, 14H, Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm: 27.16, 34.41, 38.12, 43.81, 45.98, 63.47, 110.30, 110.61, 113.92, 116.12, 118.45, 119.56, 121.42, 123.86, 126.93, 127.28, 128.98, 129.56, 130.48, 131.94, 132.92, 133.82, 135.01, 136.72, 137.18, 138.05, 156.56, 158.78, 195.24(C=O); MS (m/z) Cald.: 497.60, found: 497.16, Anal. Calc. for: C₃₃H₂₇N₃O₂: C, 79.66; H, 5.47; N, 8.44 Found: C, 79.18; H, 5.28; N, 8.68 %

4-(1-allyl-2-(4-fluorophenyl)-1*H*-indol-3-yl)-2-amino-5-oxo-7-phenyl-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile (10b)

White solid; m. p. 291°C; IR (KBr, v,cm⁻¹): 3414 and 3374 (asym. and sym. Stretching of -NH₂), 2164 (-C=N stretching), 1673 (C=O Stretching), 1251 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 2.51-2.78 (m, 4H, 2xCH₂), 3.28-3.45 (m, 1H, CH), 4.52-4.65 (m, 5H, N-CH₂CH, CHO, NH₂), 4.85 (d, 1H, N-CH₂CH=CH₂trans), 5.13(d, 1H, N-CH₂CH=CH₂cis), 5.73-5.88 (m, 1H, NCH₂CH), 6.99-7.98 (m, 13H, Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm: 27.14, 34.42, 38.14, 43.83, 45.97, 63.45, 110.28, 110.64, 113.87, 116.10, 118.47, 119.62, 121.47, 123.85, 126.91, 127.30, 128.94, 129.53, 130.51, 131.92, 133.02, 133.86, 135.03, 136.75, 137.25, 138.12, 156.49, 158.81, 195.18(C=O); MS (m/z) Cald.: 515.59, found:515.40, Anal. Calc. for: C₃₃H₂₆FN₃O₂: C, 76.88; H, 5.08; N, 8.15 Found: C, 77.05; H, 5.15; N, 8.02 %

4-(1-allyl-2-(4-bromophenyl)-1*H*-indol-3-yl)-2-amino-5-oxo-7-phenyl-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile (10c)

White solid; m. p. 256°C; IR (KBr, v,cm⁻¹): 3432 and 3365 (asym and sym. Stretching of - NH₂), 2176 (-C=N stretching), 1668 (C=O Stretching), 1252 (C-O-C ether stretching);¹H NMR (400 MHz, CDCl₃) δ ppm: 2.53-2.85 (m, 4H, 2xCH₂), 3.30-3.47 (m, 1H, CH), 4.50-

4.67 (m, 5H, N-CH₂CH,CHO, NH₂), 4.87 (d, 1H, N-CH₂CH=CH₂trans), 5.12(d, 1H, N-CH₂CH=CH₂cis), 5.72-5.86 (m, 1H, NCH₂CH), 6.97-7.99 (m, 13H, Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm: 27.12, 34.34, 38.16, 43.80, 45.95, 63.46, 110.30, 110.63, 113.85, 116.14, 118.45, 119.64, 121.51, 123.87, 126.88, 127.28, 128.92, 129.51, 130.54, 131.87, 133.07, 133.84, 135.08, 136.78, 137.31, 138.18, 156.53, 158.79, 195.15(C=O); MS (m/z) Cald.: 576.49, found: 575.68, Anal. Calc. for: C₃₃H₂₆BrN₃O₂: C, 68.75; H, 4.55; N, 7.29 Found: C, 69.01; H, 4.64; N, 7.18 %

4-(1-allyl-2-(4-chlorophenyl)-1*H*-indol-3-yl)-2-amino-5-oxo-7-phenyl-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile (10d)

White solid; m. p. 287°C; IR(KBr, v,cm⁻¹): 3443 and 3359 (asym and sym. Stretching of – NH₂), 2183 (-C=N stretching), 1672 (C=O Stretching), 1256 (C-O-C ether stretching);¹H NMR (400 MHz, CDCl₃) δ ppm: 2.55-2.84 (m, 4H, 2xCH₂), 3.27-3.41 (m, 1H, CH), 4.51-4.87 (m, 6H, N-CH₂CH=CH₂trans, CHO, NH₂), 5.12(d, 1H, N-CH₂CH=CH₂cis), 5.72-5.85 (m, 1H, NCH₂CH), 7.22-7.82 (m, 13H, Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm: 27.14, 34.38, 38.19, 43.97, 46.20, 63.53, 110.51, 110.64, 113.97, 116.60, 118.30, 119.81, 121.65, 126.04, 126.57, 126.63, 127.35, 128.48, 128.94, 129.73, 132.79, 133.36, 134.92, 136.82, 137.74, 141.75, 156.85, 158.56, 195.23(C=O); MS (m/z) Cald.: 532.04, found: 532.15, Anal. Calc. for: C₃₃H₂₆ClN₃O₂: C, 74.50; H, 4.93; N, 7.90 Found: C, 74.64; H, 5.01; N, 8.01 %

4-(1-allyl-2-phenyl-1*H*-indol-3-yl)-2-amino-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile (11a)

White solid; m. p. 278°C; IR (KBr, v,cm⁻¹): 3416 and 3335 (asym. and sym. Stretching of -NH₂), 2189 (-C=N stretching), 1672 (C=O Stretching) 1251 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 0.84-1.01 (m, 6H, 2XC<u>H₃</u>), 2.16-2.50 (m, 4H, 2XC<u>H₂</u>), 4.45-4.63 (m, 5H, N-C<u>H₂</u>CH, C<u>H</u>O, N<u>H₂</u>), 4.82(d, 1H, N-CH₂CH=C<u>H₂</u>trans), 5.10(d,1H,N-CH₂CH=C<u>H₂</u>cis), 5.80-5.87 (m, 1H, NCH₂C<u>H</u>), 6.91 -8.02 (m, 9H, Ar-<u>H</u>); ¹³CNMR (100 MHZ CDCl₃) δ ppm: 26.92, 28.11, 28.71, 32.04, 40.69, 45.92, 50.78, 63.51, 110.86, 113.07, 113.92, 115.18, 115.94, 116.87,118.21, 118.62, 119.29, 121.89, 125.36, 127.01, 132.86, 133.39, 136.40, 137.14, 156.98, 161.02, 196.30 (C=O); MS (m/z) Cald.: 449.55, found: 449.61, Anal. Calc. for: C₂₉H₂₇N₃O₂: C, 77.48; H, 6.05; N, 9.35 Found: C, 77.59; H, 5.59; N, 9.95 %

4-(1-allyl-2-(4-fluorophenyl)-1*H*-indol-3-yl)-2-amino-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile(11b)

White solid; m. p. 285°C; IR (KBr, v,cm⁻¹): 3423 and 3361 (asym. and sym. Stretching of -NH₂), 2176 (-C=N stretching), 1668 (C=O Stretching), 1247 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 0.85-1.00 (m, 6H, 2XCH₃), 2.14-2.52 (m, 4H, 2XCH₂), 4.43-4.62 (m, 5H, N-CH₂CH, CHO, NH₂), 4.80(d, 1H, N-CH₂CH=CH₂trans), 5.13(d, 1H, N-CH₂CH=CH₂cis), 5.81-5.88 (m, 1H, NCH₂CH), 6.92 -8.08 (m, 8H, Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm: 26.10, 28.87, 28.73, 32.06, 40.71, 45.89, 50.74, 63.53, 110.91, 113.14, 113.97, 115.13, 115.96, 116.82,118.24, 118.67, 119.30, 121.91, 125.41, 127.06, 132.92, 133.41, 136.48, 137.11, 156.85, 161.13, 196.28 (C=O); MS (m/z) Cald.: 467.54, found: 467.64, Anal. Calc. for: C₂₉H₂₆FN₃O₂: C, 74.50; H, 5.61; N, 8.99 Found: C, 74.45; H, 5.49; N, 9.09 %

4-(1-allyl-2-(4-bromophenyl)-1*H*-indol-3-yl)-2-amino-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile (11c)

White solid; m. p. 261°C; IR (KBr, v,cm⁻¹): 3416 and 3376 (asym and sym. Stretching of -NH₂), 2187 (-C=N stretching), 1671 (C=O Stretching), 1263 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 0.88-1.01 (m, 6H, 2XCH₃), 2.16-2.47 (m, 4H, 2XCH₂), 4.46-4.52 (m, 5H, N-CH₂CH,CHO, NH₂), 4.65(d, 1H, N-CH₂CH=CH₂trans), 5.10(d, 1H, N-CH₂CH=CH₂cis), 5.81-5.88 (m, 1H, NCH₂CH), 7.07 -7.88 (m, 8H, Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm: 27.08, 28.07, 28.63, 32.05, 40.71, 46.15, 50.88, 63.45, 110.47, 113.10, 113.74, 115.07, 115.30, 116.48,118.40, 118.90, 119.52, 121.46, 125.88, 127.16, 133.42, 133.48, 136.76, 137.85, 156.93, 161.17, 196.37(C=O); MS (m/z) Cald.: 528.45, found: 527.61, Anal. Calc. for: C₂₉H₂₆BrN₃O₂: C, 65.91; H, 4.96; N, 7.95 Found: C, 66.03; H, 5.03; N, 8.05 %

4-(1-allyl-2-(4-chlorophenyl)-1*H*-indol-3-yl)-2-amino-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile (11d)

White solid, m. p. 284°C; IR (KBr, v,cm⁻¹): 3451 and 3364 (asym and sym. Stretching of -NH₂), 2175 (-C=N stretching), 1668 (C=O Stretching), 1262 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 0.97-1.03 (m, 6H, 2XCH₃), 2.14-2.43 (m, 4H, 2XCH₂), 4.45-4.53 (m, 5H, N-CH₂CH, CHO, NH₂), 4.63(d, 1H, N-CH₂CH=CH₂trans), 5.07(d, 1H, N-CH₂CH=CH₂cis), 5.82-5.87 (m, 1H, NCH₂CH), 7.06 -7.85 (m, 8H, Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm: 27.10, 28.13, 28.65, 32.14, 40.73, 46.18, 50.79, 63.51, 110.45, 113.17, 113.81, 115.04, 115.41, 116.52, 118.39, 118.87, 119.51, 121.52, 125.88, 127.20, 133.41, 133.51, 136.81, 137.83, 156.91, 161.20, 196.35(C=O); MS (m/z) Cald.: 484.00, found: 483.87, Anal. Calc. for: C₂₉H₂₆ClN₃O₂: C, 71.97; H, 5.41; N, 8.68 Found: C, 72.04; H, 5.56; N, 8.71 %

4-(1-allyl-2-phenyl-1*H*-indol-3-yl)-2-amino-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile (12a)

White solid; m. p. 249°C; IR (KBr, v,cm⁻¹): 3432 and 3365 (asym and sym. Stretching of -NH₂), 2168 (-C=N stretching), 1667 (C=O Stretching) 1242 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 2.00-2.68 (m, 6H, CH₂), 4.45-4.59 (m, 5H, N-CH₂CH, CHO, NH₂), 4.81 (d,1H, N-CH₂CH=CH₂trans), 5.11 (d, 1H, N-CH₂CH=CH₂cis), 5.84-5.89 (m, 1H, NCH₂CH), 6.78-8.03 (m,9H,Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm: 20.16, 27.83, 30.19, 37.10, 46.16, 63.48, 101.16, 110.15, 113.10, 114.19, 116.37,118.40, 119.97, 121.42, 126.43, 128.09, 129.59, 132.03, 133.06, 134.46, 136.41, 138.04, 156.42, 159.92,196.12(C=O); MS (m/z) Cald.: 421.50, found: 421.67, Anal. Calc. for: C₂₇H₂₃N₃O₂: C, 76.94; H, 5.50; N, 9.97 Found: C, 77.15; H, 5.49; N, 9.86 %

4-(1-allyl-2-(4-fluorophenyl)-1*H*-indol-3-yl)-2-amino-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile (12b)

White solid; m. p. 285°C; IR(KBr, v,cm⁻¹): 3418 and 3357 (asym and sym. Stretching of – NH₂), 2179 (-C=N stretching), 1681 (C=O Stretching), 1253 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 2.01-2.69 (m, 6H, CH₂), 4.43-4.57 (m, 5H, N-CH₂CH, CHO, NH₂), 4.83 (d, 1H, N-CH₂CH=CH₂trans), 5.09 (d, 1H, N-CH₂CH=CH₂cis), 5.83-5.88 (m, 1H, NCH₂CH), 6.76-8.02 (m, 8H, Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm: 20.15, 27.85, 30.17, 37.09, 46.14, 63.43, 101.14, 110.13, 113.08, 114.15, 116.32,118.38, 119.85, 121.51, 126.02, 127.87, 129.56, 132.05, 133.03, 134.45, 136.39, 138.04, 156.23, 159.90,196.10(C=O); MS (m/z) Cald.: 439.49, found: 439.64, Anal. Calc. for: C₂₇H₂₂FN₃O₂: C, 73.79; H, 5.05; N, 9.56 Found: C, 73.83; H, 4.89; N, 9.76 %

4-(1-allyl-2-(4-bromophenyl)-1*H*-indol-3-yl)-2-amino-5-oxo-5,6,7,8-tetrahydro-4*H*chromene-3-carbonitrile (12c)

White solid; m. p. 294°C; IR(KBr, v,cm⁻¹): 3435 and 3384 (asym and sym. Stretching of -NH₂), 2181 (-C=N stretching), 1665 (C=O Stretching) 1251 (C-O-C ether stretching); ¹H NMR (400 MHz, CDCl₃) δ ppm: 2.00-2.58 (m, 6H, CH₂), 4.45-4.61 (m, 5H, N-CH₂CH, CHO, NH₂), 4.82 (d, 1H, N-CH₂CH=CH₂trans), 5.12 (d,1H, N-CH₂CH=CH₂cis), 5.81-5.87 (m, 1H, NCH₂CH), 6.78-8.01 (m, 8H, Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm:20.13, 27.83, 30.14, 37.11, 46.12, 63.41, 101.16, 110.12, 113.06, 114.16, 116.30,118.41, 119.81, 121.54, 126.05, 127.85, 129.59, 132.07, 133.13, 134.51, 136.42, 138.08, 156.20, 159.86,196.07(C=O); MS (m/z) Cald.: 500.40 , found: 500.55, Anal. Calc. for: C₂₇H₂₂BrN₃O₂: C, 64.81; H, 4.43; N, 8.40 Found: C, 64.93; H, 4.59; N, 8.52 %

4-(1-allyl-2-(4-chlorophenyl)-1*H*-indol-3-yl)-2-amino-5-oxo-5,6,7,8-tetrahydro-4*H*-chromene-3-carbonitrile (12d)

White solid; m. p. 279°C; IR(KBr, v,cm⁻¹): 3420 and 3387 (asym and sym. Stretching of – NH₂), 2185 (-C=N stretching), 1676 (C=O Stretching), 1261 (C-O-C ether stretching);¹H NMR(400 MHz, CDCl₃) δ ppm: 2.00-2.68 (m, 6H, CH₂), 4.44-4.50 (m, 5H, N-CH₂CH, CHO, NH₂), 4.83 (d, 1H, N-CH₂CH=CH₂trans), 5.10 (d, 1H, N-CH₂CH=CH₂cis), 5.83-5.88 (m, 1H, NCH₂CH), 7.10-7.83 (m, 8H, Ar-H); ¹³CNMR (100 MHZ CDCl₃) δ ppm:20.39, 27.28, 30.05, 37.04, 46.23, 63.46, 101.16, 110.53, 113.86, 114.13, 116.53, 118.31, 119.66, 121.56, 126.01, 128.43, 129.75, 132.84, 133.38, 134.85, 136.79, 138.62, 156.74, 159.26, 196.26(C=O); MS (m/z) Cald.: 455.94, found: 456.08, Anal. Calc. for: C₂₇H₂₂ClN₃O₂: C, 71.13; H, 4.86; N, 9.22 Found: C, 71.24; H, 5.07; N, 9.31 %

Pharmacology

Evaluation of antimicrobial activity

The *in vitro* antimicrobial activity was carried out by broth microdilution method according to National Committee for Clinical Laboratory Standards (NCCLS) ^{XVII}. Antibacterial activity was screened against antibacterial *E.coli* MTCC 443, *S. typhi* MTCC 98, *V. cholerae* MTCC 3906 as Gram-negative bacteria and *S. pneumonia* MTCC 1936, *B. subtilis* MTCC 441 and *C. tetani* MTCC 449 as Gram-positive bacteria by using ampicillin, ciprofloxacin and norfloxacin as standard antibacterial drugs. Antifungal activity was screened against two fungal species *C. albicans* MTCC 227 and *T.rubrum* MTCC 97.Where, griseofulvin and nystatin were used as standard antifungal drugs. The antimicrobial screening data are shown in (**Table 1**). All MTCC cultures were collected from Institute of Microbial Technology, Chandigarh and tested against above mentioned known drugs. Mueller Hinton broth was used as nutrient medium to grow and dilute the drug suspension for the test.

Evaluation of antituberculosis activity

All the synthesized compounds were evaluated for their *in vitro* antituberculosis activity against the *M. tuberculosis* H37Rv strain. Primary screening of all the newly synthesized compounds was conducted at 250 mgmL by using Lowensteine–Jensen medium as described by Rattan^{XVIII}. The observed screening results are showed in (**Table 2**) in the form of % inhibition, relative to that of standard antitubercular drug Rifampicin and Isoniazid which were used as the standard drugs.

Evaluation of antimalarial activity

All synthesized chromene and pyran derivatives were evaluated for their *in vitro* antimalarial activity against *P. falciparum* strain. Chloroquine and quinine were used as the reference

drugs. The pharmacological screening results are expressed as the drug concentration resulting in 50% inhibition (IC₅₀) of parasite growth. The obtained antimalarial screening data are presented in **Table 3**.

Conclusion

In conclusion, we have demonstrated a convenient method for the synthesis of pyrano[3,2c]chromene, pyrano[4,3-b]pyran and 4H-chromene derivatives bearing N-allyl indole moiety have been synthesized by environmentally benign, microwave-assisted, one-pot multicomponent reaction in presence of non-hazardous triethylamine as a catalyst. This synthetic strategy allows the consolidation of two promising biopotent nucleus into a single scaffold through a straightforward method. All the compounds were screened for their antimicrobial, antimalarial and antituberculosis activities with the hope of discovering much potent antimicrobial, antimalarial and antituberculosis agents. It can be concluded from pharmacological screening that many of the synthesized compounds exhibited better antimicrobial activity against gram positive bacteria, but showed less effectiveness towards gram negative bacteria. In antifungal screening compounds 8d, 10d were found to be much potent to standard drug nystatin and equipotent to gresofulvin. Compounds 8b, 9a, 10c exhibited most efficient antitubercular activity. While for antimalarial activity, compound 8c, 9d, 10b, 10c, 11a and 11b showed excellent activity against P. falciparum strains as compared to quinine. Therefore, on the basis of SAR analysis, it can be resolved that the lipophilicity of allylic group, change of the peripheral substituents and various different nature of the heterocyclic motifs fused at positions 5 and 6 in pyran were profoundly responsible to influence antimicrobial, antituberculosis and antimalarial potency.

Acknowledgements The authors are thankful to Head, Department of Chemistry, Sardar Patel University for providing ¹H NMR, ¹³C NMR, FT-IR spectroscopy and research facilities. We are also thankful to CIST, Sardar Patel University for providing mass spectrometry facilities, SICART, Vallabh Vidyanagar, for elemental analysis and Dhanji P. Rajani, Microcare Laboratory, Surat, for antimicrobial, antimalarial and antituberculosis screening of the compounds reported herein. Pratibha prasad and Pratik G. Shobhashana are grateful to University Grants Commission – New Delhi, India, for Meritorious Fellowships in Sciences for Meritorious Students.

References

- I. McKay, M.J., Carroll, A.R., Quinn, R.J. and Hooper, J.N., Journal of natural products, **65**, 595 (2002).
- II. Kaushik, N.K., Kaushik, N., Attri, P., Kumar, N., Kim, C.H., Verma, A.K. and Choi, E.H., Molecules, 18, 6620 (2013).
- III. Praveen, C., Ayyanar, A. and Perumal, P.T., Bioorganic & medicinal chemistry letters, **21**, 4072 (2011).
- IV. Kathrotiya, H.G., Patel, R.G. and Patel, M.P., Journal of the Serbian Chemical Society, 77, 983 (2012).
- V. Ough, M., Lewis, A., Bey, E.A., Gao, J., Ritchie, J.M., Bornmann, W., Boothman, D.A., Oberley, L.W. and Cullen, J.J., 4, 102 (2005).
- VI. Green, G.R., Evans, J.M. and Vong, A.K., Comprehensive heterocyclic chemistry II, 5, 469 (1995).
- VII. Thomas NA, Zachariah SM. Asian J. Pharm. Clin. Res.; 6:11 (2013).
- VIII. Mungra, D.C., Patel, M.P., Rajani, D.P. and Patel, R.G., European journal of medicinal chemistry, **46**, 4192 (2011).

- IX. Raju, B.C., Rao, R.N., Suman, P., Yogeeswari, P., Sriram, D., Shaik, T.B. and Kalivendi, S.V., Bioorganic & medicinal chemistry letters, **21**, 2855 (2011).
- X. Bolós, J., Gubert, S., Anglada, L., Planas, J.M., Burgarolas, C., Castelló, J.M., Sacristán, A. and Ortiz, J.A., Journal of medicinal chemistry, **39**, 2962 (1996).
- XI. Jardosh, H.H., Sangani, C.B., Patel, M.P. and Patel, R.G., Chinese Chemical Letters, 24, 123(2013).
- XII. Kathrotiya, H.G. and Patel, M.P., European journal of medicinal chemistry, **63**, 675 (2013).
- XIII. Ladani, G.G. and Patel, M.P., RSC Advances, 5, 76943 (2015).
- XIV. Mungra, D.C., Patel, M.P. and Patel, R.G., Medicinal Chemistry Research, 20, 782(2011).
- XV. Jadhav, S.A., Sangshetti, J.N., Pardeshi, R.K. and Shinde, D.B., (2017).
- XVI. C Heda, L.C., Sharma, R., Pareek, C. and Chaudhari, P.B., Journal of Chemistry, 6, 770 (2009).
- XVII. Performance Standards for Antimicrobial Susceptibility Testing: Twelfth Informational Supplement, NCCLS (National Committee for Clinical Laboratory Standards), ISBN 1-56238-454-6. M100-S12 (M7) (2002).
- XVIII. Rattan, in Antimicrobials in Laboratory Medicine, ed. B. I. Churchill, Livingstone, New Delhi, 85 (2000).

Received on June 1, 2017.